3.5.66 \(\int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx\) [466]

3.5.66.1 Optimal result
3.5.66.2 Mathematica [A] (verified)
3.5.66.3 Rubi [A] (verified)
3.5.66.4 Maple [B] (warning: unable to verify)
3.5.66.5 Fricas [B] (verification not implemented)
3.5.66.6 Sympy [F(-1)]
3.5.66.7 Maxima [F]
3.5.66.8 Giac [F(-1)]
3.5.66.9 Mupad [F(-1)]

3.5.66.1 Optimal result

Integrand size = 35, antiderivative size = 247 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=-\frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{5/2} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{5/2} d}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 b \left (8 a^2 A b+2 A b^3-5 a^3 B+a b^2 B\right ) \sqrt {\tan (c+d x)}}{3 a^2 \left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}} \]

output
-(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I* 
a-b)^(5/2)/d-(A-I*B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c 
))^(1/2))/(I*a+b)^(5/2)/d+2/3*b*(8*A*a^2*b+2*A*b^3-5*B*a^3+B*a*b^2)*tan(d* 
x+c)^(1/2)/a^2/(a^2+b^2)^2/d/(a+b*tan(d*x+c))^(1/2)+2/3*b*(A*b-B*a)*tan(d* 
x+c)^(1/2)/a/(a^2+b^2)/d/(a+b*tan(d*x+c))^(3/2)
 
3.5.66.2 Mathematica [A] (verified)

Time = 2.75 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.11 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=\frac {-3 \sqrt [4]{-1} \left (\frac {(a+i b)^2 (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {i (a-i b)^2 (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right )+\frac {2 b \left (a^2+b^2\right ) (A b-a B) \sqrt {\tan (c+d x)}}{a (a+b \tan (c+d x))^{3/2}}+\frac {2 b \left (8 a^2 A b+2 A b^3-5 a^3 B+a b^2 B\right ) \sqrt {\tan (c+d x)}}{a^2 \sqrt {a+b \tan (c+d x)}}}{3 \left (a^2+b^2\right )^2 d} \]

input
Integrate[(A + B*Tan[c + d*x])/(Sqrt[Tan[c + d*x]]*(a + b*Tan[c + d*x])^(5 
/2)),x]
 
output
(-3*(-1)^(1/4)*(((a + I*b)^2*(I*A + B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*S 
qrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a + I*b] + (I*(a - I*b 
)^2*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a 
+ b*Tan[c + d*x]]])/Sqrt[a + I*b]) + (2*b*(a^2 + b^2)*(A*b - a*B)*Sqrt[Tan 
[c + d*x]])/(a*(a + b*Tan[c + d*x])^(3/2)) + (2*b*(8*a^2*A*b + 2*A*b^3 - 5 
*a^3*B + a*b^2*B)*Sqrt[Tan[c + d*x]])/(a^2*Sqrt[a + b*Tan[c + d*x]]))/(3*( 
a^2 + b^2)^2*d)
 
3.5.66.3 Rubi [A] (verified)

Time = 1.57 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.21, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {3042, 4092, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \frac {2 \int \frac {3 A a^2+b B a-3 (A b-a B) \tan (c+d x) a+2 A b^2+2 b (A b-a B) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 A a^2+b B a-3 (A b-a B) \tan (c+d x) a+2 A b^2+2 b (A b-a B) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 A a^2+b B a-3 (A b-a B) \tan (c+d x) a+2 A b^2+2 b (A b-a B) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {\frac {2 \int \frac {3 \left (a^2 \left (A a^2+2 b B a-A b^2\right )-a^2 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \int \frac {a^2 \left (A a^2+2 b B a-A b^2\right )-a^2 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \int \frac {a^2 \left (A a^2+2 b B a-A b^2\right )-a^2 \left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4099

\(\displaystyle \frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^2 (a-i b)^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b)^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^2 (a-i b)^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b)^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4098

\(\displaystyle \frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a-i b)^2 (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^2 (a+i b)^2 (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a-i b)^2 (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^2 (a+i b)^2 (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a+i b)^2 (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^2 (a-i b)^2 (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 b (A b-a B) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 B+8 a^2 A b+a b^2 B+2 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a-i b)^2 (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^2 (a+i b)^2 (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\)

input
Int[(A + B*Tan[c + d*x])/(Sqrt[Tan[c + d*x]]*(a + b*Tan[c + d*x])^(5/2)),x 
]
 
output
(2*b*(A*b - a*B)*Sqrt[Tan[c + d*x]])/(3*a*(a^2 + b^2)*d*(a + b*Tan[c + d*x 
])^(3/2)) + ((3*((a^2*(a - I*b)^2*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan 
[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a^2*(a + I*b)^ 
2*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + 
d*x]]])/(Sqrt[I*a + b]*d)))/(a*(a^2 + b^2)) + (2*b*(8*a^2*A*b + 2*A*b^3 - 
5*a^3*B + a*b^2*B)*Sqrt[Tan[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + 
 d*x]]))/(3*a*(a^2 + b^2))
 

3.5.66.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 
3.5.66.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 3.07 (sec) , antiderivative size = 2975233, normalized size of antiderivative = 12045.48

\[\text {output too large to display}\]

input
int((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x)
 
output
result too large to display
 
3.5.66.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 27639 vs. \(2 (208) = 416\).

Time = 14.52 (sec) , antiderivative size = 27639, normalized size of antiderivative = 111.90 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.5.66.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)**(1/2)/(a+b*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.5.66.7 Maxima [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\tan \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)/((b*tan(d*x + c) + a)^(5/2)*sqrt(tan(d*x + 
c))), x)
 
3.5.66.8 Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algo 
rithm="giac")
 
output
Timed out
 
3.5.66.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int((A + B*tan(c + d*x))/(tan(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(5/2)),x 
)
 
output
int((A + B*tan(c + d*x))/(tan(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(5/2)), 
x)